Goto

Collaborating Authors

 Nova Scotia


Major publishers sue AI startup Cohere over copyright infringement

Engadget

This is another salvo in the ongoing war between the people that make stuff and the AI algorithms that mimic the stuff that people make. Additionally, the startup has been accused of passing off large segments of entire articles to its users without proper attribution. "Rather than create their own content, they're stealing ours to compete with us without our permission, without compensation, and undermining our very business that feeds their machines in the first place," said Danielle Coffey, CEO of the News Media Alliance, which organized the lawsuit on behalf of its members. The suit also says the company has engaged in trademark infringement, suggesting that the algorithm would send articles to users with proper attribution, using the publisher's name, but the article itself would be filled with hallucinated and incorrect information. One example given in the suit involves a piece that The Guardian published about Hamas's attack on the Nova music festival in Israel, only the AI conflated the terror attack with a 2020 shooting in Nova Scotia, Canada. Members of the News Media Alliance are suing the AI company Cohere, accusing it of stealing their journalism without permission to train its generative AI model.


Improved IR-based Bug Localization with Intelligent Relevance Feedback

arXiv.org Artificial Intelligence

Software bugs pose a significant challenge during development and maintenance, and practitioners spend nearly 50% of their time dealing with bugs. Many existing techniques adopt Information Retrieval (IR) to localize a reported bug using textual and semantic relevance between bug reports and source code. However, they often struggle to bridge a critical gap between bug reports and code that requires in-depth contextual understanding, which goes beyond textual or semantic relevance. In this paper, we present a novel technique for bug localization - BRaIn - that addresses the contextual gaps by assessing the relevance between bug reports and code with Large Language Models (LLM). It then leverages the LLM's feedback (a.k.a., Intelligent Relevance Feedback) to reformulate queries and re-rank source documents, improving bug localization. We evaluate BRaIn using a benchmark dataset, Bench4BL, and three performance metrics and compare it against six baseline techniques from the literature. Our experimental results show that BRaIn outperforms baselines by 87.6%, 89.5%, and 48.8% margins in MAP, MRR, and HIT@K, respectively. Additionally, it can localize approximately 52% of bugs that cannot be localized by the baseline techniques due to the poor quality of corresponding bug reports. By addressing the contextual gaps and introducing Intelligent Relevance Feedback, BRaIn advances not only theory but also improves IR-based bug localization.


Language Representation Favored Zero-Shot Cross-Domain Cognitive Diagnosis

arXiv.org Artificial Intelligence

Cognitive diagnosis aims to infer students' mastery levels based on their historical response logs. However, existing cognitive diagnosis models (CDMs), which rely on ID embeddings, often have to train specific models on specific domains. This limitation may hinder their directly practical application in various target domains, such as different subjects (e.g., Math, English and Physics) or different education platforms (e.g., ASSISTments, Junyi Academy and Khan Academy). To address this issue, this paper proposes the language representation favored zero-shot cross-domain cognitive diagnosis (LRCD). Specifically, LRCD first analyzes the behavior patterns of students, exercises and concepts in different domains, and then describes the profiles of students, exercises and concepts using textual descriptions. Via recent advanced text-embedding modules, these profiles can be transformed to vectors in the unified language space. Moreover, to address the discrepancy between the language space and the cognitive diagnosis space, we propose language-cognitive mappers in LRCD to learn the mapping from the former to the latter. Then, these profiles can be easily and efficiently integrated and trained with existing CDMs. Extensive experiments show that training LRCD on real-world datasets can achieve commendable zero-shot performance across different target domains, and in some cases, it can even achieve competitive performance with some classic CDMs trained on the full response data on target domains. Notably, we surprisingly find that LRCD can also provide interesting insights into the differences between various subjects (such as humanities and sciences) and sources (such as primary and secondary education).


Solar device transforms used tires to help purify water so that it's drinkable

FOX News

Clean drinking water is available even in the most remote areas. Imagine a world where clean drinking water is readily available even in the most remote areas. This vision is becoming a reality thanks to innovative research from scientists in Canada. A team of scientists at Dalhousie University in Halifax, Nova Scotia, has developed a groundbreaking device that could revolutionize water desalination, offering hope to millions facing water scarcity worldwide. At the heart of this innovation is a floating solar still, a device that harnesses the sun's energy to purify seawater.


Mapping Methane -- The Impact of Dairy Farm Practices on Emissions Through Satellite Data and Machine Learning

arXiv.org Artificial Intelligence

This study investigates the correlation between dairy farm characteristics and methane concentrations as derived from satellite observations in Eastern Canada. Utilizing data from 11 dairy farms collected between January 2020 and December 2022, we integrated Sentinel-5P satellite methane data with critical farm-level attributes, including herd genetics, feeding practices, and management strategies. Initial analyses revealed significant correlations with methane concentrations, leading to the application of Variance Inflation Factor (VIF) and Principal Component Analysis (PCA) to address multicollinearity and enhance model stability. Subsequently, machine learning models - specifically Random Forest and Neural Networks - were employed to evaluate feature importance and predict methane emissions. Our findings indicate a strong negative correlation between the Estimated Breeding Value (EBV) for protein percentage and methane concentrations, suggesting that genetic selection for higher milk protein content could be an effective strategy for emissions reduction. The integration of atmospheric transport models with satellite data further refined our emission estimates, significantly enhancing accuracy and spatial resolution. This research underscores the potential of advanced satellite monitoring, machine learning techniques, and atmospheric modeling in improving methane emission assessments within the dairy sector. It emphasizes the critical role of farm-specific characteristics in developing effective mitigation strategies. Future investigations should focus on expanding the dataset and incorporating inversion modeling for more precise emission quantification. Balancing ecological impacts with economic viability will be essential for fostering sustainable dairy farming practices.


Multi Modal Information Fusion of Acoustic and Linguistic Data for Decoding Dairy Cow Vocalizations in Animal Welfare Assessment

arXiv.org Artificial Intelligence

Understanding animal vocalizations through multi-source data fusion is crucial for assessing emotional states and enhancing animal welfare in precision livestock farming. This study aims to decode dairy cow contact calls by employing multi-modal data fusion techniques, integrating transcription, semantic analysis, contextual and emotional assessment, and acoustic feature extraction. We utilized the Natural Language Processing model to transcribe audio recordings of cow vocalizations into written form. By fusing multiple acoustic features frequency, duration, and intensity with transcribed textual data, we developed a comprehensive representation of cow vocalizations. Utilizing data fusion within a custom-developed ontology, we categorized vocalizations into high frequency calls associated with distress or arousal, and low frequency calls linked to contentment or calmness. Analyzing the fused multi dimensional data, we identified anxiety related features indicative of emotional distress, including specific frequency measurements and sound spectrum results. Assessing the sentiment and acoustic features of vocalizations from 20 individual cows allowed us to determine differences in calling patterns and emotional states. Employing advanced machine learning algorithms, Random Forest, Support Vector Machine, and Recurrent Neural Networks, we effectively processed and fused multi-source data to classify cow vocalizations. These models were optimized to handle computational demands and data quality challenges inherent in practical farm environments. Our findings demonstrate the effectiveness of multi-source data fusion and intelligent processing techniques in animal welfare monitoring. This study represents a significant advancement in animal welfare assessment, highlighting the role of innovative fusion technologies in understanding and improving the emotional wellbeing of dairy cows.


BenthicNet: A global compilation of seafloor images for deep learning applications

arXiv.org Artificial Intelligence

Advances in underwater imaging enable the collection of extensive seafloor image datasets that are necessary for monitoring important benthic ecosystems. The ability to collect seafloor imagery has outpaced our capacity to analyze it, hindering expedient mobilization of this crucial environmental information. Recent machine learning approaches provide opportunities to increase the efficiency with which seafloor image datasets are analyzed, yet large and consistent datasets necessary to support development of such approaches are scarce. Here we present BenthicNet: a global compilation of seafloor imagery designed to support the training and evaluation of large-scale image recognition models. An initial set of over 11.4 million images was collected and curated to represent a diversity of seafloor environments using a representative subset of 1.3 million images. These are accompanied by 2.6 million annotations translated to the CATAMI scheme, which span 190,000 of the images. A large deep learning model was trained on this compilation and preliminary results suggest it has utility for automating large and small-scale image analysis tasks. The compilation and model are made openly available for use by the scientific community at https://doi.org/10.20383/103.0614.


PANDORA: Deep graph learning based COVID-19 infection risk level forecasting

arXiv.org Artificial Intelligence

COVID-19 as a global pandemic causes a massive disruption to social stability that threatens human life and the economy. Policymakers and all elements of society must deliver measurable actions based on the pandemic's severity to minimize the detrimental impact of COVID-19. A proper forecasting system is arguably important to provide an early signal of the risk of COVID-19 infection so that the authorities are ready to protect the people from the worst. However, making a good forecasting model for infection risks in different cities or regions is not an easy task, because it has a lot of influential factors that are difficult to be identified manually. To address the current limitations, we propose a deep graph learning model, called PANDORA, to predict the infection risks of COVID-19, by considering all essential factors and integrating them into a geographical network. The framework uses geographical position relations and transportation frequency as higher-order structural properties formulated by higher-order network structures (i.e., network motifs). Moreover, four significant node attributes (i.e., multiple features of a particular area, including climate, medical condition, economy, and human mobility) are also considered. We propose three different aggregators to better aggregate node attributes and structural features, namely, Hadamard, Summation, and Connection. Experimental results over real data show that PANDORA outperforms the baseline method with higher accuracy and faster convergence speed, no matter which aggregator is chosen. We believe that PANDORA using deep graph learning provides a promising approach to get superior performance in infection risk level forecasting and help humans battle the COVID-19 crisis.


The Promise and Challenges of Using LLMs to Accelerate the Screening Process of Systematic Reviews

arXiv.org Artificial Intelligence

Systematic review (SR) is a popular research method in software engineering (SE). However, conducting an SR takes an average of 67 weeks. Thus, automating any step of the SR process could reduce the effort associated with SRs. Our objective is to investigate if Large Language Models (LLMs) can accelerate title-abstract screening by simplifying abstracts for human screeners, and automating title-abstract screening. We performed an experiment where humans screened titles and abstracts for 20 papers with both original and simplified abstracts from a prior SR. The experiment with human screeners was reproduced with GPT-3.5 and GPT-4 LLMs to perform the same screening tasks. We also studied if different prompting techniques (Zero-shot (ZS), One-shot (OS), Few-shot (FS), and Few-shot with Chain-of-Thought (FS-CoT)) improve the screening performance of LLMs. Lastly, we studied if redesigning the prompt used in the LLM reproduction of screening leads to improved performance. Text simplification did not increase the screeners' screening performance, but reduced the time used in screening. Screeners' scientific literacy skills and researcher status predict screening performance. Some LLM and prompt combinations perform as well as human screeners in the screening tasks. Our results indicate that the GPT-4 LLM is better than its predecessor, GPT-3.5. Additionally, Few-shot and One-shot prompting outperforms Zero-shot prompting. Using LLMs for text simplification in the screening process does not significantly improve human performance. Using LLMs to automate title-abstract screening seems promising, but current LLMs are not significantly more accurate than human screeners. To recommend the use of LLMs in the screening process of SRs, more research is needed. We recommend future SR studies publish replication packages with screening data to enable more conclusive experimenting with LLM screening.


Anti-LM Decoding for Zero-shot In-context Machine Translation

arXiv.org Artificial Intelligence

Zero-shot In-context learning is the phenomenon where models can perform the task simply given the instructions. However, pre-trained large language models are known to be poorly calibrated for this task. One of the most effective approaches to handling this bias is to adopt a contrastive decoding objective, which accounts for the prior probability of generating the next token by conditioning on some context. This work introduces an Anti-Language Model objective with a decay factor designed to address the weaknesses of In-context Machine Translation. We conduct our experiments across 3 model types and sizes, 3 language directions, and for both greedy decoding and beam search ($B=5$). The proposed method outperforms other state-of-art decoding objectives, with up to $20$ BLEU point improvement from the default objective observed in some settings.